INDIAN MARITIME UNIVERSITY
(A Central University, Govt. Of India)
End Semester Examination December 2018

B. Tech. (Marine Engineering)
 Semester - I
 Mathematics - I (UG11T3102)

Time: 3 Hrs.
Pass Marks: 50

PART - A

$(3 \times 10=30)$

Compulsory Questions: (The symbols have their usual meanings.)

1.

(a) Find the nth derivative of $y=x \log \frac{x-1}{x+1}$.
(b) If $u=f(x, y)$ and $=r \cos \theta, y=r \sin \theta$, prove that

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=\left(\frac{\partial u}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2} .
$$

(c) If $u^{3}+v^{3}=x+y$ and $u^{2}+v^{2}=x^{3}+y^{3}$, show that $\frac{\partial(u, v)}{\partial(x, y)}=\frac{1}{2} \frac{y^{2}-x^{2}}{u v(u-v)}$.
(d) Find the radius of curvature at any point on the curve

$$
x=a(\theta+\sin \theta), \quad y=a(1-\cos \theta) .
$$

(e) Express the integral $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of Gamma function.
(f) Evaluate the integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.
(g) Find the unit normal vector to the surface $x y^{2} z=3 x+z^{2}$ at the point $(-1,-1,2)$.
(h) Using Cayley Hamilton theorem find the A^{-1} of matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
(i) Show that shortest distance between two points in a plane is a straight line.
(j) Graphically find the maximum value of $Z=x_{1}+x_{2}$ subject to the constraints $x_{1}+2 x_{2} \geq 2, x_{1} \leq 3, x_{2} \leq 4, x_{1}, x_{2} \geq 0$.
PART - B
$(14 \times 5=70)$

Answer any FIVE of the following questions

2(a) If $y=\left(\sin ^{-1} x\right)^{2}$, prove that
(i) $\left(1-x^{2}\right) y_{2}-x y_{1}=2$
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
(b) Find the asymptotes of the curve

$$
\begin{equation*}
4 x^{3}+2 x^{2}-3 x y^{2}-y^{3}-1-x y-y^{2}=0 \tag{7}
\end{equation*}
$$

3(a) If $u=\operatorname{cosec}^{-1}\left(\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}\right)^{1 / 2}$, prove that

$$
\begin{equation*}
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{\tan u}{12}\left(\frac{13}{12}+\frac{\tan ^{2} u}{12}\right) . \tag{7}
\end{equation*}
$$

(b) Find the maximum and minimum distance of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=1$.

4(a) Evaluate the double integral $\iint e^{2 x+3 y} d x d y$ over the triangle bounded by $x=0, y=0$ and $x+y=1$.
(b) Evaluate triple integral $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$.

5(a) Find the directional derivative of $\emptyset=x^{2} y^{2} z^{2}$ at the point $(1,1,-1)$ in the direction of the tangent to the curve $x=e^{t}, y=\sin 2 t+1, z=1-\cos t$ at $t=0$.
(b) Show that the vector field $\vec{F}=\left(x^{2}+x y^{2}\right) \hat{\imath}+\left(y^{2}+x^{2} y\right) \hat{\jmath}$ is irrotational.

Find a scalar potential function \emptyset such that $\vec{F}=\nabla \emptyset$.
6(a) Discuss the consistency of the following system of equations and solve it if consistent.

$$
\begin{align*}
& 2 x-y+3 z=4 \\
& x+y-3 z=-1 \\
& 5 x-y+3 z=7 \tag{7}
\end{align*}
$$

(b) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$.

7(a) Let $F(z)=u(x, y)+i v(x, y)$ be an analytic function of z. If $u=x^{3}-$ $3 x y^{2}+3 x^{2}-3 y^{2}$ then find the v and express $f(z)$ in terms of z.
(b) Evaluate the integral $\oint_{C} \frac{e^{-z}}{(z-1)(z-2)^{2}} d z$, where C is the circle $|z|=3$. [7]

8(a) Using simplex method solve the following LPP
Maximize $Z=5 x_{1}+3 x_{2}$
subject to $x_{1}+x_{2} \leq 2,5 x_{1}+2 x_{2} \leq 10,3 x_{1}+8 x_{2} \leq 12, x_{1}, x_{2} \geq 0$.
8(b) Find the curve on which functional $\int_{0}^{2}\left(x+y^{\prime}\right) y^{\prime} d x$ with $y(0)=0$ and $y(2)=1$ can be extremized.

